If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+7x-1068=0
a = 1; b = 7; c = -1068;
Δ = b2-4ac
Δ = 72-4·1·(-1068)
Δ = 4321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{4321}}{2*1}=\frac{-7-\sqrt{4321}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{4321}}{2*1}=\frac{-7+\sqrt{4321}}{2} $
| 20x^2-64x+12=0 | | y=-2³+7 | | 9x-7=-+15x | | 10w+19+3w=6(9+w)-14=w | | 6(9+w)-14=w | | .20x=40000 | | 10x+19+3x=x | | 2x-7(6x-13)=11 | | 4^-x+14=16 | | 2m-11=-23 | | m/3-4=10 | | 6/1/3=-1/2/t | | 40(3x+10=) | | x-0,7x=329 | | x+0,5x=300 | | x+14+x+6=90 | | x/2+62=58 | | (2x-10)(3x-18)=0 | | c=20+5 | | 12×-4y=5 | | 5y12=4y+5 | | a^2=-5a+1 | | c=30-6 | | -10x^2-35x-15=0 | | (x+2)(4x+8)=0 | | y=4(-1)+10 | | (2x-4)/(6)-2=4 | | 12p-3-8p=1 | | -9n-8-9n=10 | | 3^4x-9=1/243. | | F(x)=-x²+10x-16 | | 3^{4x-9}={1}{243}. |